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Near Real-Time Optimal Prediction of Adverse Events

in Aviation Data

Rodney A. Martin∗ and Santanu Das†

The prediction of anomalies or adverse events is a challenging task, and there are a va-
riety of methods which can be used to address the problem. In this paper, we demonstrate
how to recast the anomaly prediction problem into a form whose solution is accessible
as a level-crossing prediction problem. The level-crossing prediction problem has an el-
egant, optimal, yet untested solution under certain technical constraints, and only when
the appropriate modeling assumptions are made. As such, we will thoroughly investigate
the resilience of these modeling assumptions, and show how they affect final performance.
Finally, the predictive capability of this method will be assessed by quantitative means,
using both validation and test data containing anomalies or adverse events from real avi-
ation data sets that have previously been identified as operationally significant by domain
experts. It will be shown that the formulation proposed yields a lower false alarm rate
on average than competing methods based on similarly advanced concepts, and a higher
correct detection rate than a standard method based upon exceedances that is commonly
used for prediction.

Nomenclature

k Time index
‖ · ‖ Euclidean norm
� Positive semi-definite
I Universe of all possible events
(·)′ Not (Set complement)
(·)> Transpose
P (·) Probability
E[·] Expected Value
N (µ,Σ) Gaussian distribution with mean µ and covariance Σ
N (x;µ,Σ) Gaussian distribution evaluated at x with mean µ and covariance Σ

I. Introduction

Developing an automated anomaly prediction capability in near-real time for aircraft systems or sub-
systems is of great importance for the future of aviation safety. It is also important that algorithms

providing this predictive capability are capable of isolating the anomalies to specific components or sensors,
while providing an algorithmic explanation of the reasons why the anomalies were flagged. One of the ob-
jectives we plan to achieve in the process of developing such an algorithm is to allow for the prediction to
occur within a 2 second time horizon of an actual adverse event, with a false positive rate less than 5%.
The motivation for these specific objectives stems from the need to establish a minimum required time for
the crew to respond to a critical event with a high level of confidence, in part driven by a study performed
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by Hayden et al.1 The operational significance and meaning of the adverse events will be assessed by do-
main experts, but can also be assisted by appropriate tools such as limit checks and other well established
universally accepted aviation rules.

These types of specifications fit very neatly within a framework introduced in previous work,2 where we
developed the theoretical basis for a method of optimal level-crossing prediction, enabled by Kalman filtering.
Optimality is realized here by providing an upper bound on the false alarm probability for a fixed detection
probability, and over a fixed prediction horizon. Therefore, it is our aim in this paper to document our initial
steps towards achieving the goal of developing a new, state-of-the-art forecasting technology by using these
newly conceived theoretical ideas. Our hope is to demonstrate the plausibility of these novel techniques by
conducting a preliminary investigation using real aviation data. In previous optimal level-crossing prediction
research, we studied a “two-sided” level crossing event that spans a fixed prediction horizon and exceeds upper
and lower predefined critical thresholds symmetric about the mean of a stationary linear Gaussian process
many times during the timeframe. The two-sided case is practically relevant when monitoring residuals that
may be derived from the output of other machine learning algorithms or transformed parameters that relate
to system performance. This last point is of paramount importance in the use of this approach. We may
connect multiple models in series, each of which is developed with the aid of machine learning techniques in
an architecture of the type introduced in previous work (cf. Martin3). Fig. 1 below illustrates this concept.

Figure 1. Proposed Functional Architecture

In this investigation we will test the theoretical assumptions made by appealing to the use of the optimal
level-crossing predictor and other standard unsupervised machine learning techniques used to parameterize
the underlying models shown in Fig. 1. Here we will employ real aviation data sets, where independent time
series each represent individual flights. Selected sets of flights from a single aircraft will be chosen to develop
a model, and two other distinct sets of flights from this same aircraft will be used for validation and testing
purposes. We appeal to the idea of “boosting” in order to allow for the use of the residual generated from the
base model by the Kalman filter. In Fig. 1, the regression block represents the base model, which processes a
select number of parameters (the “multivariate time series”) and maps them to a distinct target parameter.
The residual output from this block quantifies the difference between the actual value of the pre-specified
target parameter and the value predicted by the base model. Thus, implicitly the use of this architecture
extends the domain of this work to systems producing multivariate data, rather than only univariate data as
was introduced in the seminal article for this topic. This is primarily implemented with the use of a “base
model” to preprocess the multivariate time series, resulting in a univariate output.

Ostensibly, this mapping should have a functional basis specific to the safe operation of the aircraft,
for which any reasonably robust machine learning approach can be used (e.g. linear regression, quadratic
regression, Gaussian process regression, nonlinear kernel-based regression such as is found in MSET4 (Mul-
tivariate State Estimation Technique), bagged neural nets, etc.). However, for the purposes of our study, we
will use support vector regression (SVR)5 to provide this mapping. Furthermore, a single target parameter
that acts as a global health indicator which represents safe operation of the aircraft rarely exists in real-
ity. In fact, there may be multiple such indicators for each adverse event or anomalous operation that is a
candidate for prediction. Thus, we may train as many support vector regressors as there are available to
characterize adverse events and target parameters. However, in this study we draw from a pool of candidate
target parameters and use only a single target parameter for a single adverse event based upon a selected
performance objective.

The residual may hypothetically be distributed in such a way that is amenable to modeling as a Gaussian
distribution, and can be used as the basis for learning a linear dynamical system, which can subsequently
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be used for design of an optimal level-crossing predictor. As such, we will investigate the two-sided level-
crossing event in this paper, and also use a Kalman filter-based approach in an optimal manner relevant
for the prediction of level-crossings. Note that the optimal level-crossing predictor in its current incarnation
requires use of the underlying linear dynamical system model associated with the Kalman filter (evidenced
by the arrow leading from the Kalman filter box to the optimal alarm system box within the dotted line
shown in Fig. 1).

The rest of this paper will be organized as follows. In Sec. II we will review the architecture for the
algorithmic flow related to Fig. 1, as specifically related to signal flow, and tuning for the best possible
performance in generation of the results. Data preprocessing and feature selection necessary for application
of SVR, as well as the methods used to aid in the identification of prominent features for tuning will also
be discussed. In Sec. III we will provide a brief background on support vector regression. In Sec. IV we will
review parameter learning for the linear dynamical system, based upon the SVR residuals. In Sec. V we
provide a brief background on the concepts of optimal level-crossing prediction. Finally, in Sec. VI we review
the tuning process in detail, which will employ the use of validation and testing data sets to be presented
and discussed. Furthermore, we will quantify and compare the results of the optimal level-crossing predictor
to a competing method based upon the Sequential Probability Ratio Test (SPRT), and a standard method
based upon exceedances, both of which are commonly used for prediction. All of the results will then be
summarized in a concluding section, Sec. VII.

II. Signal Flow and Algorithmic Tuning

Fig. 1 is actually a functional representation of the architecture, meaning that the arrows in the diagram
represent batch data transfer, rather than signal flow or real-time signal processing. This paradigm is used to
emphasize the fact that learning takes place in stages, due to the serial nature of the architecture. Otherwise
stated, the architecture involves not just one, but two distinct algorithms which both involve machine
learning, and are necessary to fulfill the desired objective of recasting the anomaly prediction problem into
a form whose solution is accessible as a level-crossing prediction problem.

Fig. 2 depicts a more intuitive signal flow representation of the problem. The linear dynamical system
(LDS) shown in the dotted portion of the diagram can be thought of as an alternate representation of the
SVR block. More explicitly, the LDS is trained to mimic both the spectral and temporal characteristics of the
SVR residual, such that yk = zk − ẑk, where yk represents both the SVR residual and the LDS output, and
zk represents a target parameter relevant to safe operation of the aircraft that characterizes a specifically
designated adverse event or anomaly. Note that the SVR block takes as input a multivariate vector of
features, uk, and outputs an estimate of this target parameter, ẑk. Note also that the LDS block takes as
input the input or process noise, wk, and measurement noise, vk. Loosely, we can intuit that the process
noise provides a statistical characterization of the multivariate vector of features, uk, and the measurement
noise provides a statistical characterization of the target parameter, zk.

The Kalman filter block accepts input from the SVR block as yk, which processes these residuals as
observables, and computes state estimates, x̂k|k, based upon these observations during the correction step.
These state estimates can then be used to form forward projected residual value predictions, ŷk+i|k, spanning
the prediction horizon, ∀i ∈ {1, . . . , d} which are then used by the optimal level-crossing predictor to initiate
an alarm with a minimal false alarm probability as dictated by the alarm design parameter, or border
probability, Pb. The level-crossing event is parameterized both by L, the critical level, and d, the prediction
horizon. The optimal level-crossing event predictor, Kalman filter and value predictor all fundamentally use
the LDS parameters, θ, which have been learned during the training process (see Fig. 2.)

Another functional block diagram of interest is related to algorithmic tuning for the best possible per-
formance in generation of the results. Fig. 3 illustrates such a block diagram, in which the ultimate goal of
tuning is to optimize model fidelity while at the same time closing the gap between the prediction perfor-
mance achieved by the training and validation data. Although prediction performance is typically quantified
by the AUC (area under the ROC (Receiver Operating Characteristic) curve), it can be misleading to use
this metric for optimization, and is best left for evaluation purposes. For anomaly detection techniques that
do not involve extensive modeling, such as ones studied in a comparative analysis by Martin,6 it may be
feasible to use the AUC for optimization, however. The main drawback in using the AUC for optimization
here is due to the fact that it does not incorporate a measure of model fidelity. It is possible for a model to
have a very poor fit to the data, but for the AUC to be very high. Situations such as this are mainly due to
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Figure 2. Signal Flow Diagram

ease in discriminability between the two classes of data, which in our case are nominal and anomalous data.
Thus, a high AUC can result if the validation (anomalous) data results in a residual that differs greatly than
the residual generated from the training (nominal) data, regardless of model fidelity. As such, maximizing
the AUC as part of the optimization can be unproductive, and should best be left for evaluation purposes.
This discriminability can also be quantified by other means for optimization, using metrics that were de-
signed more for these purposes, such as the small sample corrected AIC (Akaike Information Criterion),
(Kolmogorov-Smirnov) KS statistic, and information gain.

The AIC metric is one often used for model order selection in linear dynamical systems, due to its inherent
capability to assess the fit of the data to the model based upon the number of model parameters. As such,
it can be used for the assessment of model fidelity, and has been used in previous related work.3,7 The KS
statistic is fundamentally a measure of Gaussianity of a dataset, by finding the maximum difference between
an empirical cumulative distribution function based upon the data and the normal distribution with mean
and standard deviation given by the same data. Finally, the information gain, also know as the Kullback-
Leibler (KL) divergence can also be used to quantify the discriminability between the nominal and anomalous
classes of data. The KL divergence is also use in the AIC computation. The optimization will thus take
into account all three metrics, placing the most weight on the KS statistic, as it is valid for all competing
methods to be compared, and offers no special advantages to the optimal level-crossing prediction method.
The AIC and KL divergence will be used to arbitrate final selection of the optimal kernel width. Overall,
the desired objectives are to minimize the KS statistic and AIC, while maximizing the KL divergence.

An additional factor to consider when tuning is selection of the target parameter, shown as the outer
loop in Fig. 3. As mentioned previously, there may be multiple target parameter candidates that should
be good indicators for the adverse event to be predicted. For the adverse event to be studied in the paper,
the most relevant parameters have previously been identified by Das et al.,8 and may act as candidate
target parameters. The remaining parameters may act as input or feature parameters. Furthermore, certain
features will be better predictors of the candidate targets than others. During the tuning process, candidate
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Figure 3. Algorithmic Tuning Diagram

target parameters that are not being tested in that role are then included in the feature parameter set as
a predictor of the candidate selected as the target parameter. All candidates will be rotated to the role of
target parameter, and the one yielding the best performance as quantified by ROC curve statistics will be
selected for final tuning using the inner loop shown in Fig. 3.

One of the many advantages of the optimal alarm system is that ROC curve statistics (the true and false
positive rates) can be expressed directly as a function of the model parameters, which are fundamentally
an expression of the training data. Therefore, construction of a baseline ROC curve can proceed without
the need to observe actual examples of failures, and there is no need to estimate the alarm system metrics
empirically. The ROC curve generated from training data serves as an approximation of one that is generated
empirically, i.e. via simulation. This obviates the need to rely upon having actual available examples of
failures for generation of a candidate ROC curve.

As such, it is imperative that the gap between training data-based ROC curve and one based upon actual
observations of anomalies be made as small as possible. The level-crossing event must sufficiently characterize
an actual adverse event to realize the advantage of expressing the ROC curve as a function of the model
parameters. In our case, this translates to ensuring that the correct kernel width from the SVR block is
being used to allow for recasting the anomaly detection problem as a level-crossing problem by increasing
model fidelity and class discriminability. As seen in Fig. 3, the first step prior to the commencement of any
tuning is feature selection. This involves the identification of relevant parameters in the aviation dataset,
uk, that have been considered relevant predictors of the select target parameter, zk, by experts and the
elimination of irrelevant features by other means as documented in Das et al.8

Subsequently, data preprocessing which includes z-score normalization is performed. A performance
assessment is then made by the method previously described, which is based upon the two designated

5 of 21

American Institute of Aeronautics and Astronautics



requirements of good model fidelity and class discriminability. Selection and tuning for an appropriate
kernel width value corresponding to these requirements follows. When both requirements have been met,
the next step involves training the linear dynamical system, informed by model order selection as a function
of the amount of nominal data used for training, and based upon a variety of other indicators to aid in the
process. These and other details involved with this step, such as initialization of the model parameters, will
be discussed in earnest in Sec. IV. This step is followed by optimal alarm design, which requires selection of
L, the critical level, and d, the prediction horizon. L can often be found by selecting an appropriate p-value
associated with a reasonable confidence interval for the underlying Gaussian distribution made available by
the modeling assumptions. A fixed target value for d can be used to establish the prediction horizon. Both
of these parameters have bearing on robustness of prediction performance as described by Martin.2

Once the alarm system has been designed, the resulting design parameters can be used for final testing
and implementation. This step is seeded by a disjoint hold out dataset which was not used for either
training or validation, and presumably contains real examples of adverse events that are similar in nature
to those used for validation. It is in this final step that the resulting AUC based upon testing data will be
compared to those generated from validation and training. It also implicitly involves the signal flow diagram
shown in Fig. 2, where the inputs and outputs are not made explicit in Fig. 3, but can be thought of as
taking place within the block labelled “Testing and threshold selection.” A threshold will be selected by
establishing a maximum allowable false alarm probability, and applying it to the validation ROC curve.
The resulting threshold will be used to form a realization using the test data illustrating all observed true
and false positives, and missed detections. The same testing regimen will be applied to the two baseline
predictive methods described previously for comparison.

III. Support Vector Regression

In this section, we provide a brief description of the η−Support vector regression algorithm that we use
for target prediction.5 Support vector regression was chosen over other competing regression techniques such
as the method(s) used in MSET due to its improved ability to reduce target value prediction error, and built
in controls for complexity and numerical stability as found in a nuclear application.9 Given a finite set of
multivariate observations, it is possible to reconstruct an input and target set that takes the form as shown
in Eqn. 1, where U

4
= [u0 . . .uT ]> is an input data matrix of size (T × p) and the corresponding output is

denoted by z
4
= [z0 . . . zT ]>, termed as the target vector. Thus, there are p parameters and T observations.

Once the η−Support vector regression algorithm is appropriately trained, it is possible to estimate a target
function f(uk) that has at the most a deviation of η from the actual observed targets {zk}Tk=0 for all the
input data {uk ∈ Rp}Tk=0.

z = f(U) (1)

The target function f(·) is basically a linear combination of weighted similarities between some chosen
training points and the test points with an additional offset which is often known as bias, ρ. The chosen
training instances with m non-zero weights are termed support vectors (SVs, ui) and they are the represen-
tatives of the model. This implies that, given the model, any training points apart from the SVs are of no
importance and can be thrown out without changing the performance of the algorithm. The target function
is shown in Eqn. 2.

f(uk) =
m∑
i=1

(αi − α̂i) 〈ui,uk〉+ ρ (2)

The support vectors and their corresponding weights, αi and α̂i result from the solution of a quadratic
programming optimization problem in dual form. The expression of the primal problem is shown in Eqn. 3.
Further details on the cost function and optimization problem can be found in Smola and Schölkopf.5
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minimize P
(
q, C, ξ+k , ξ

−
k

)
=

1
2
qq> + C

T∑
k=0

(
ξ+k + ξ−k

)
subject to

(
zk − q>φ(uk)− ρ

)
≤ η + ξ+k(

zk − q>φ(uk)− ρ
)
≥ η + ξ−k

ξ+k , ξ
−
k ≥ 0

C > 0 (3)

C and η are user specified regularization and precision parameters respectively. ξ+, ξ− are non-zero
slack variables, q is the weight vector normal to the separating hyperplane, ρ is the offset parameter, φ(uk)
represents the transformed image of uk ∈ Rp in the same Euclidean space, and k ∈ [0, . . . , T ]. Throughout
this research we have used the RBF (Radial Basis Function) as the mapping function given in Eqn. 4, where
σ represents the hyperparameter of the Gaussian function.

〈ui,uk〉 = exp
(
−1

2
‖ uk − ui ‖2

σ2

)
(4)

The parameter σ controls the overall scale in horizontal variations. Furthermore, for the Gaussian RBF
kernel, appropriate values of the hyperparameter, σ, lent itself to distribution of the resulting SVR prediction
residual as nearly Gaussian.

IV. Linear Dynamical System

The linear dynamical system will evolve according to Eqns. 5 - 7, demonstrating propagation of both
the state, xk ∈ Rn which is corrupted by process noise wk ∈ Rn, and the covariance matrix, Pk, with
time-invariant parameters. The output, yk ∈ R is univariate, and is corrupted by measurement noise vk ∈ R.

xk+1 = Axk + wk (5)
yk = Cxk + vk (6)

Pk+1 = APkA> + Q (7)

where

wk ∼ N (0,Q), Q � 0

vk ∼ N (0, R), R > 0
x0 ∼ N (µx,P0)
µx = E[xk]
Pk = E[(xk − µx)(xk − µx)>]

The parameters to be learned are specified in Eqn. 8, as the parameter θ. These parameters are also
shown in Fig. 4, which specify them in relation to the probabilistic graphical modeling paradigm which may
be used for machine learning purposes. As seen, the number of data points span T time increments.

θ = (µx,P0,A,C,Q, R) (8)

It is also important to introduce the standard Kalman filter Eqns. 9 - 13, to be used in subsequent
learning and prediction formulae.

ŷk|k = Cx̂k|k (9)
x̂k|k−1 = Ax̂k−1|k−1 (10)

x̂k|k = x̂k|k−1 + Fk|k−1εk (11)

Pk|k−1 = APk−1|k−1A> + Q (12)
Pk|k = Pk|k−1 − Fk|k−1CPk|k−1 (13)
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Figure 4. Linear Dynamical System

εk represents the innovation of the Kalman filter, and the following definitions hold:

x̂k|k
4
= E[xk|y0, . . . , yk]

Pk|k
4
= E[(xk − x̂k|k)(xk − x̂k|k)>|y0, . . . , yk]

Fk|k−1
4
= Pk|k−1C>(CPk|k−1C> +R)−1

εk
4
= yk −Cx̂k|k−1

There are two important considerations in learning the parameters that comprise θ. The first consider-
ation is selection of the model order, n, which can be performed using a variety of methods. The second
consideration relates to the method of learning the parameters. One such data-driven approach incorporates
the use of the EM algorithm, which is an iterative maximum likelihood estimation-based approach that is
ultimately a nonlinear optimization problem. As such, it is possible to arrive at a solution which is only a
local optimum, and there may be better solutions based upon the location of the initial parameters.

In previous work,3 the EM algorithm (as implemented by Murphy10 within the probabilistic graphical
modeling context shown in Fig. 4) was used to learn the model parameters using a variety of initialization
techniques. Furthermore, the fidelity of resulting models was assessed via AIC-based criteria, such as one
presented by Bengtsson and Cavanaugh,7 in addition to being used for model order selection. In this paper
we consider alternative approaches. A report by Derek et al.11 provides an example in which model order
selection techniques can be performed with the aid of the SVD (singular value decomposition) of a block
Hankel matrix. The blocks of this matrix are constructed by computing sample autocovariance matrices
generated from the data. Under certain technical conditions, the rank of the resulting block Hankel matrix
will provide an estimate of n, the model order. However, for practical reasons these technical conditions
must be relaxed, thus the resulting estimate provides an approximation of the model order. In other work by
Overschee and De Moor,12–14 as well as Favoreel et al.,15 the technical conditions for model order selection
vary from those used in the report by Derek et al.,11 and apply almost directly to the system described by
Eqns. 5-7. However, they are based upon the SVD of a different matrix, yet are ultimately also constructed
by sample data. The number of non-zero singular values will provide an estimate of the model order.

Model order selection can also be assisted with the use of two other supplementary methods. One such
method is based upon Canonical Variate Analysis (CVA) introduced by Larimore,16 in which the principal
angle between the row spaces of the past outputs and the future outputs is used to determine model order.
Here, the number of principal angles different from 90 degrees provides an estimate of the model order.
Intuitively, this makes sense due to the fact that the corresponding row spaces can be considered more
linearly dependent as the principle angles approach 90 degrees. As such, including any of the principle
angles that approach 90 degrees into the estimate could be considered overfitting the model order by the
small margin to linear dependence. The second method is based upon the prediction error as quantified by
the innovation of the Kalman filter, εk, for a variety of candidate model orders. Here, the model order is
estimated by selecting the candidate model order above which there is a consistent low value after a jump
down from higher values found for lower candidate model orders.
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It has thus become clear that model order selection can be somewhat of an art, and based partially upon
heuristics, regardless of the method selected. One last heuristic used to determine the final model order
involves taking the median or rounded mean of the resulting model orders derived from all three methods
presented. Furthermore, the amount of data used to form the resulting model order estimates naturally have
some bearing on the outcome of applying these heuristics. Thus, in order to determine the amount of data
sufficient to estimate model order based upon select heuristics for all three methods, we have run Monte
Carlo simulations as shown in Fig. 5.

The heuristics are applied as described below:

Singular Value Method The model order is estimated as the last instance of consecutive decreases of
singular value magnitudes greater than 0.1.

Principle Angle Method The model order is estimated as the last instance of consecutive increases of
principal angle magnitudes greater than 1.

Prediction Error Method The model order is estimated as arg minnbεnk + 1
2c, where εnk is the simulation

error for model order n, where εk is defined as shown in Eqn. 14, which is also provided in Overschee
and De Moor.12

εk = 100

√√√√∑T
k=1 ε

2
k∑T

k=1 y
2
k

(14)

In Fig. 5 we have computed ensemble averages of model order estimates over 100 runs, shown for increasing
data lengths and for increasing target model orders. The target model order was the order used to seed each
simulation. The top three panels show the average model order computed using heuristics as a function of
target model order and the number of data samples. However, for assessment of how the number of data
samples affects the average model order, it is more enlightening to use the bottom three panels, which looks
at a “side” view of the top panels, and uses a logarithmic scale for the number of data samples.

There are two observations that can be made from the bottom three panels. The first observation relates
to the relative agreement among all three methods for estimating model order when greater than 20, 000
samples are used. Above this limit, there is an apparent convergence to model order estimates between
n = 1 and n = 4 for all three methods, although the convergence is most apparent for the principle angle and
prediction error methods, where the range of model order estimates narrows to values between approximately
n = 1 and n = 3. The second conclusion is that even though the target model orders were selected between
n = 1 and n = 10, the average model order estimates are no greater than n = 4 for any method, using the
given heuristics, and given sufficient data. This indicates that the Monte Carlo simulations generating the
data distributed according to the underlying models with fixed orders can be reduced. Model order reduction
using balanced realization is a common control theoretic method useful for generating numerically stable
reduced order realizations that are both controllable and observable. Intuitively, this phenomenon may be
occurring implicitly, as exemplified by this second observation.

When using real data, if we assume that its statistics are fairly well characterized by the underlying
distribution of this model, then we can use these observations to provide minimum data requirements (Tmin =
20, 000) in guiding model order selection. Furthermore, this minimum data requirement appears to be valid
regardless of the true model order, as observed by the apparent convergence to a limited range of reduced
model orders. Using these model order selection techniques provided for by methods described by Overschee
and De Moor,12–14 parameter estimates for θa shown in Eqn. 15 can also be obtained.

θa = (µx,P0,A,C,Q, R,S) (15)

S
4
=cov(wk, vk) represents the correlation between input and measurement noise, which is not modeled

in Eqns. 5-7, such that S = 0. These parameter estimates are based upon a subspace projection method
know as N4SID (Numerical Algorithms for Subspace State-Space System IDentification) and are inherently
suboptimal due to the error introduced with the subspace projection. However, often the resulting models
offer a good fit to the data, and are also often used as initial parameters for susbsequent refinement during
iterative nonlinear optimzation using a prediction error minimization (PEM) method. This is equivalent to
choosing a cost function similar to Eqn. 14, as documented in the literature by Ljung.17 Ostensibly, EM
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Figure 5. Minimum Data Requirements for Model Order Selection

learning here is equivalent to applying PEM, and although the cost function10 is distinctly different, the
fact that the parameters are learned via iterative nonlinear optimization is the same. Therefore, the N4SID
parameters can be used as initial estimates for EM learning, where the model by definition has a non-zero
correlation between input and measurement noise. Implicitly, the equivalent state-space model as described

10 of 21

American Institute of Aeronautics and Astronautics



by Eqns. 5-7 is found by holding S = 0 during EM learning.
Another issue is system stability, which is not guaranteed by any of the methods described in this section.

Thus, only systems that have been identified with spectral radius ρ(A) < 1 are accepted. Techniques to
enforce stability recommended by Overschee and DeMoor12 (i.e. augmenting the extended observability
matrix) were applied for systems identified as unstable. However, in these cases the resulting spectral radius
was often so close to unity that the conditions for uniqueness of the steady-state solution for Eqn. 7 were
violated. In general, low order stable systems can be identified without having to rely on the use of this
technique. As such, most of the unstable systems eliminated from consideration were higher order systems.
Future research will allow for enforcement of stability throughout the entire identification and learning
procedure, as suggested in recent work.18,19

V. Optimal Level-Crossing Prediction

Recall that the anomaly detection problem can be cast as an optimal level-crossing prediction problem
in the context of Figs. 1-3. In this section, we provide an overview of some of the fundamental theoretical
and implementation details of this method. A level-crossing event, Ck, is defined with a critical level, L,
that is assumed to have a fixed, static value. The level is exceeded by a critical parameter, yk, that can be
represented by a dynamic process, and is modeled as a zero-mean stationary linear dynamic system driven by
Gaussian noise. The theoretical underpinnings of this approach are based upon this standard representation
of the optimal level-crossing problem. As such, our underlying assumption is that we can fit all SVR residuals
generated in Fig. 2 to a model represented by a stationary linear dynamical system driven by Gaussian noise.

The essence of the optimal alarm system is derived from the use of the likelihood ratio resulting in
the conditional inequality: P (Ck|y0, . . . , yk) ≥ Pb. This basically says “give alarm when the conditional
probability of the event, Ck, exceeds the level Pb.” Here, Pb represents some optimally chosen border or
threshold probability with respect to a relevant alarm system metric. It is necessary to find the alarm regions
in order to design the alarm system. The event, Ck, can be chosen arbitrarily, and is usually defined with
respect to a prediction window, d, as well as the critical threshold, L. In this paper, the event of interest
is shown in Eqn. 16, and represents at least one exceedance outside of the threshold envelope specified by
[−L,L] of the process yk within the specified look-ahead prediction window, d.

Ck
4
=

d⋃
j=1

Sk+j (16)

=
d⋃
j=1

E′k+j (17)

= I \
d⋂
j=1

Ek+j (18)

where

Ek+j
4
= {|yk+j | < L}, ∀j ≥ 1

Sk+j
4
=

{
E′k+j j = 1⋂j−1

i=1 Ek+i, E
′
k+j ∀j > 1

Eqn. 19 represents the unconditional probability of the level-crossing event in its most compact repre-
sentational form.

P (Ck) = 1−
∫ L

−L
· · ·
∫ L

−L
N (yd;µyd

,Σyd
)dyd (19)

where
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yd
4
=


yk+1

...
yk+d

 , µyd
= 0d

Σyd

4
=

{
CPkC> +R ∀i = j ∈ {1, . . . , d}
CPk+i,k+jC> ∀j > i ∈ {1, . . . , d}

and Pk+i,k+j
4
= Aj(Pk −PL

ss)(A
>)i + Aj−iPL

ss

We may approximate Σyd
by substituting the steady-state version of the Lyapunov equation PL

ss in place
of Pk, given previously as Eqn. 7, which agrees with our assumption of stationarity. As such,

Σyd
≈

{
CPL

ssC
> +R ∀i = j ∈ {1, . . . , d}

CAj−iPL
ssC

> ∀j > i ∈ {1, . . . , d}

This approximation, while it introduces error with regards to the probability of a level-crossing event,
P (Ck) at a specific point in time, k, is ostensibly negligible and will provide for a great computational
advantage in the design of all alarm systems that it is based upon. Instead of designing an alarm system
for each time step, we design a single alarm system based upon the limiting statistics that are reached at
steady-state, greatly reducing the computational burden. It is these specific types of restrictions that have
been lifted in work by Antunes et al.,20 but also incur much greater computational effort.

Previous work2 provides the mathematical underpinnings for the optimal alarm condition corresponding
to the level-crossing event, shown here as Eqn. 20. Alternatively, the optimal alarm condition derived in the
cited paper can be expressed in terms of the subevents Ek+j , as shown in Eqn. 21.

P (Ck|y0, . . . , yk) ≥ Pb (20)

⇔ P (
d⋂
j=1

Ek+j |y0, . . . , yk) ≤ 1− Pb (21)

Recall from Fig. 2 that state estimates generated from Kalman filtering Eqns. 9 - 13 were to be used in
subsequent prediction formulae. As such, here they can be used to form forward projected residual value
predictions, ŷk+j|k, spanning the prediction horizon, ∀j ∈ {1, . . . , d} for the level-crossing event. Therefore,
relevant predictions, covariances and cross-covariances must be computed and are given below as Eqns. 22-
26, respectively.

ŷk+j|k = CAjx̂k+j|k (22)

Pk+j|k = Aj(Pk|k −PL
ss)(A

>)j + PL
ss (23)

≈ Aj(P̂R
ss −PL

ss)(A
>)j + PL

ss (24)
Pk+i,k+j|k = Aj(Pk|k −PL

ss)(A
>)i + Aj−iPL

ss (25)

≈ Aj(P̂R
ss −PL

ss)(A
>)i + Aj−iPL

ss (26)

P̂R
ss = PR

ss − FssCPR
ss (27)

Fss = PR
ssC

>(CPR
ssC

> +R)−1 (28)

PR
ss is the combined steady-state version of Eqns. 12 and 13 given previously, or the discrete algebraic

Riccati equation, and P̂R
ss is the steady-state a posteriori covariance matrix given in Eqn. 27. Eqn. 28,

which is the steady-state version of the Kalman gain from Eqn. 14 is also used in Eqn. 27.
The approximations shown in Eqns. 24 and 26, while suboptimal with regards to the optimality of the

Kalman filter as cited by Lewis,21 will provide for a great computational advantage in design of the optimal
alarm system and its corresponding approximations. Instead of designing an optimal alarm system for each
time step, we design a single optimal alarm system based upon the limiting statistics that are reached at
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steady-state, greatly reducing the computational burden. The assumption of stationarity thus required for
the design of an optimal alarm system holds here as well.

A more formal representation of the optimal alarm region, Ak, is shown in Eqn. 29, which essentially
defines a sublevel set of g(ŷd)

4
=P (

⋂d
j=1Ek+j |y0, . . . , yk) as a function of ŷd.

Ak
4
= {

d⋂
i=1

ŷk+i|k : P (Ck|y0, . . . , yk) ≥ Pb} (29)

4
= {

d⋂
i=1

ŷk+i|k : P (
d⋂
j=1

Ek+j |y0, . . . , yk) ≤ 1− Pb}

As was discussed in seminal work in this topic,2 it is not possible to obtain a closed-form representation
of the parametrization for the optimal alarm region shown in Eqn. 29. To allay the computational burden of
using Monte Carlo simulation to generate ROC curve statistics to be estimated empirically, we can generate
ROC curve statistics by numerically integrating expressions for the computation of relevant multivariate
normal probabilities whose domains of integration serve as approximations for Eqn. 29. In the seminal
article,2 there are two such approximations that were studied. In this paper we use the “closed-form”
approximation that requires the least computational effort which was shown not to lose any appreciable
accuracy as compared to the other approximation, as quantified by the AUC.

The approximation to the optimal alarm region in “closed-form,” is shown in Eqn. 30.

d⋃
j=1

⋃
i∈B

Ai,jk =
d⋃
j=1

|ŷk+j|k| ≥ L+
√
Vk+j|kΦ−1(Pb) ≡ LAj (30)

where

Ai,jk = {ŷk+j|k : P (Eik+j
′|y0, . . . , yk) ≥ Pb}

Vk+j|k
4
= CPk+j|kC> +R

i ∈ B ≡ {`, υ} = {lower limit, upper limit}
Eυk+j = {yk+j < L}
E`k+j = {yk+j > −L}

Φ−1(·) represents the inverse cumulative normal standard distribution function, and LAj
∀j ∈ {1, . . . , d}

represent the limits of integration. It is possible to generate formulae for the true and false positive rates as
a function of LAj

by using Eqns. 31-32, where in place of Ak its approximation
⋃d
j=1

⋃
i∈B A

i,j
k may be used.

True positive rate:

Pd = P (Ck|Ak) =
P (Ck, Ak)
P (Ak)

(31)

False positive rate:

Pfa = P (Ak|C
′

k) =
P (C

′

k, Ak)
P (C ′

k)
(32)

=
P (Ak)− P (Ck, Ak)

1− P (Ck)

Because we have already introduced the formula for P (Ck) in Eqn. 19, which holds regardless of the
alarm system being used, we must only find expressions for P (Ck, Ak) and P (Ak).

P (Ak) =

{
P (
⋃d
j=1

⋃
i∈B A

i,j
k ) Pb > Pbcrit

1 Pb = Pbcrit

(33)

=

{
1− P (

⋂d
j=1

⋂
i∈B A

i,j
k ) Pb > Pbcrit

1 Pb = Pbcrit
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P (Ck, Ak) =

{
P (Ck)− P (A′k) + P (C ′k, A

′
k) Pb > Pbcrit

P (Ck) Pb = Pbcrit

(34)

where

P (A′k) = P (
d⋂
j=1

⋂
i∈B

Ai,jk ) = P (
d⋂
j=1

|ŷk+j|k| < LAj
)

=
∫ LA1

−LA1

· · ·
∫ LAd

−LAd

N (ŷd;µyd
, Σ̂ŷd

)dyd

and

Σ̂ŷd

4
= Σyd

− Σ̂yd

= O(PL
ss − P̂R

ss)O
>

O
4
=


CA

...
CAd



ŷd
4
= E[yd|y0, . . . , yk] =


ŷk+1|k

...
ŷk+d|k


Σ̂yd

4
=

{
Vk+i|k ∀i = j ∈ [1, . . . , d]

CPk+i,k+j|kC> ∀i 6= j ∈ [1, . . . , d]

Furthermore,

P (C ′k, A
′
k) = P (

d⋂
j=1

Ek+j ,

d⋂
j=1

Ω′Aj
)

=
∫ L

−L
· · ·
∫ L

−L

∫ LA1

−LA1

· · ·
∫ LAd

−LAd

N (z;µz,Σz)dz

where

z
4
=

[
yd
ŷd

]

µz
4
=

[
µyd

µyd

]

Σz
4
=

[
Σyd

Σ̂ŷd

Σ̂ŷd
Σ̂ŷd

]

The domain of feasibility for this approximation is shown in Eqn. 35, whose derivation is provided in the
seminal article.2

Pb ≥ Pbcrit = Φ

(
−L√
Vk+d|k

)
(35)

As far as runtime implementation details are concerned, we have the option of using the “closed-form”
approximation which amounts to limit checking of the type governed by Eqn. 30. As mentioned previously,
the advantage of doing so is that the computational burden is much less than that of the other approximation
or the exact alarm condition shown in Eqn. 20, especially as the prediction horizon increases. Furthermore,
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the implemented alarm system will exhibit the same characteristics as the designed alarm system. However,
the approximation is inherently suboptimal. As such, we may alternatively use the exact alarm condition for
runtime implementation. However, doing so will only guarantee optimality if the alarm system were designed
by using Monte Carlo simulation to generate ROC curve statistics, in the limit of infinite samples. It must be
emphasized that we’ve chosen to use the “closed-form” approximation for design of the alarm system rather
than simulating an unknown and infeasibly large number of samples to approximate the limiting statistics.
Any error that is introduced during this design process as characterized in the seminal article2 will translate
at runtime implementation. Hence, the approximation error cannot be avoided as a result of this choice. As
such, the best choice will be to perform design of the alarm system with knowledge of how the suboptimality
manifests itself at design time. Ultimately, the lesser of two evils is to pay now at design time rather than
later at runtime.

When assessing the performance of the alarm system via the ROC curve, either for validation during
tuning, or for final testing, it will be necessary to obtain both ground truth data and a score representing
the degree of anomalousness of each monitored data point. In our case, the score is quantified by the
conditional probability of the level-crossing event, which represents the basis of the optimal alarm condition
without any approximations. Unlike run-time implementation, the “closed form” approximation cannot be
used to substitute for the exact optimal alarm condition here in the context of the conditional level-crossing
probability. Approximation of the alarm region occurs in vector space and does not translate to a single
equivalent probability in probability space. As such, we must rely on the actual optimal alarm conditional
level-crossing probability for validation and final testing when constructing the ROC curve. This implies that
an error will be present throughout the tuning process due to the fact that the closed form approximation
will be used at design time and the exact optimal alarm condition will be used for tuning. However, under
certain technical conditions (see Martin2) this error can be kept to a minimum, to the extent that it is on
par with standard sampling error.

VI. Results

Prior to formal validation, testing, and evaluation of the optimal level-crossing predictor performance on
real aviation data and real anomalies, we will conduct a preliminary set of experiments. One experiment
will use both simulated data and simulated faults, and the other will use real data and simulated faults.
Conducting both of these experiments will ensure that we learn how much the model fidelity affects the
ability of the optimal level-crossing predictor to outperform a standard method based upon exceedances.
This is used for comparison because it is one that is commonly used for prediction. The experiments will
also involve a comparison to a baseline prediction method that is based upon the Sequential Probability Ratio
Test (SPRT), a central part of MSET that has met with quite favorable results and is used ubiquitously in
nuclear applications, as well as aviation and space applications.22

The SPRT test statistic is a cumulative log-likelihood ratio between the probability distributions charac-
terizing anomalous and nominal behavior, respectively, as shown in Eqn. 36. The denominator represents the
null hypothesis, H0 shown as Eqn. 38 and characterizes nominal behavior, while the numerator represents
the alternative hypothesis, Hj and characterizes anomalous behavior. There are four distinct alternative
hypotheses shown as Eqns. 39-42, which are tested using the SPRT statistics that are computed with MSET
to provide comprehensive coverage. These statistics test the hypotheses for both positive and negative mean
drifts, as well as nominal and inverse variance shifts. The optimal stopping rule is provided by Eqn. 37,
where Pd and Pfa are preselected target values.
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Sk = Sk−1 +
k∑
i=1

log
p(εi|Hj)
p(εi|H0)

, j ∈ {1, . . . , 4} (36)

Sk > log
Pd
Pfa

(37)

p(εi|H0) = N (εi; 0,CPR
ssC

> +R) (38)
p(εi|H1) = N (εi;M,CPR

ssC
> +R) (39)

p(εi|H2) = N (εi;−M,CPR
ssC

> +R) (40)
p(εi|H3) = N (εi; 0, V (CPR

ssC
> +R)) (41)

p(εi|H4) = N (εi; 0,
CPR

ssC
> +R

V
) (42)

Table 1. Simulation Experiments

Alternate Hypothesis Simulation Parameters Testing Criteria

Standard Exceedance p = 0.01 p = 0.01

Optimal Level-Crossing
Prediction

d = 5, p = 0.01 d = 5, p = 0.01

SPRT Positive Mean Shift Ramp to nominal maxk yk at
random time

M = 0.01

SPRT Negative Mean Shift Ramp to nominal −maxk yk at
random time

M = 0.01

SPRT Nominal Variance Shift Apply constant multiplier M = 5
to nominal yk at random time

V = 1.5

SPRT Inverse Variance Shift Apply constant multiplier
M = 1

5 to nominal yk at random
time

V = 1.5

These hypotheses along with the level-crossing alternate hypothesis will all be tested via simulation. In
order to allow for a fair comparison of the alternate level-crossing hypothesis to the remaining four SPRT-
based hypotheses, we will implement a prewhitening filter for the latter. This is required in order to meet the
assumptions implicit in using the SPRT, which is that the residuals coming from the estimation part of MSET
(which in our case are the SVR residuals) are white (i.e. not serially correlated), and Gaussian. Gaussianity
has already been provided for by application of the tuning procedure discussed in Sec. II, illustrated by Fig. 3.
Furthermore, the state estimation procedure involved with MSET is specifically designed to yield residuals
that are white.4 Since we are not using the same state estimation procedure as MSET, this prewhitening
step is compulsory. It is important to note that LDS parameters C, PR

ss, and R which were trained using the
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methods described in Sec. IV are the same ones used in the tests corresponding to Eqns. 38-42. Conveniently,
prewhitening occurs naturally via the Kalman filter residual, and thus the associated filter parameters are
based upon the same θ subsequently used for optimal level-crossing prediction. This lends itself nicely to a
well balanced basis for comparison. The failure simulations will be seeded by inserting candidate faults into
nominal data to generate ground truth data corresponding to all five of the alternate hypotheses, and tested
accordingly as shown in Table 1. The nominal real data is derived from the concatenation of 11 real flights
from regional jets previously identified as nominal, all of which come from the same commercial aviation
dataset.

The positive and negative shifts were respectively simulated with linearly increasing and decreasing ramps
as the DC frequency component. This simulation type was selected in order to more closely approximate
the gradual onset of an adverse event rather than an immediate shift which would be less amenable to the
assessment of predictive capability. The metric used to assess performance will be the AUC, which quantifies
the probability of correctly ranking two randomly selected nominal and anomalous data points respectively.23

In order to evaluate the AUC metric with respect to the desired 2 second prediction time horizon, the binary
ground truth vector used to compute it is advanced by the number of indices corresponding to this duration.
Eqns. 43 and 44 provide a summary of the performance of all of the methods as confusion matrices Msr

and Mss, respectively. The subscript sr is meant to indicate that real data is seeded with simulated faults,
and the subscript ss is mean to indicate that simulated data is seeded with simulated faults. The rows
correspond to the simulations of the alternate hypotheses shown in Table 1 (in the same order), and columns
correspond to tests of those alternate hypotheses (again, in the same order as shown in Table 1). Thus, the
performance of a specific alternate hypothesis being tested for all 6 simulated anomalies can be determined
by looking at all of the row entries for the corresponding column.

Msr =



0.9712 0.9709 0.3471 0.3835 0.3859 0.5896
0.9013 0.9047 0.3538 0.3776 0.4015 0.5604
0.8457 0.8551 0.5319 0.0030 0.2452 0.5769
0.9215 0.9271 0.0000 0.99997 0.9290 0.0065
0.8773 0.8856 0.8884 0.9615 0.9865 0.8902
0.3199 0.3537 0.0002 0.0001 0.0000 0.999992


(43)

As we can see for the case of real data with simulated faults, the optimal level-crossing predictor and
standard exceedance measure both perform well for all of the simulated anomalies with the notable exception
of the inverse variance shift. The SPRT tests for the negative mean, nominal and inverse variance shifts yield
almost perfect performance for robust detection of their respective fault simulations. The SPRT test for the
positive mean shift yields a less desirable result for robust detection of the respective fault simulation. With
certain exceptions, the SPRT tests perform poorly on robustly detecting fault simulations other than the
ones they were hypothesized to detect. All tests, however seem to be able to robustly detect the nominal
variance shift fault simulation. The SPRT tests have difficulty robustly detecting the level-crossing and
exceedance events, although the inverse variance SPRT test performs better than random guessing for both.

Even though three out of the four SPRT tests yield nearly perfect performance for robust detection of
their respective fault simulations, the thresholds corresponding to the optimal stopping rule for these tests
never result in the lowest possible false positive and missed detection rates. We also note that the results
reported in Eqns. 43 and 44 depend heavily on the choice of SPRT testing criteria (i.e. M and V ), which
provide a measure of sensitivity for the tests. Thus, in general both the optimal level-crossing predictor
and standard exceedance measure provide broader coverage than the SPRT-based tests for hypothesized
anomalies outside of the class of anomalies they were designed to detect.

Mss =



0.9918 0.9933 0.5341 0.5205 0.5382 0.5263
0.9381 0.9537 0.5366 0.4936 0.5323 0.4975
0.7288 0.7388 0.4154 0.0223 0.0236 0.0007
0.8976 0.9054 0.0000 0.999996 0.4906 0.0000
0.8726 0.8732 0.7777 0.0026 0.99995 0
0.1840 0.1985 0.0015 0.0004 0.0019 0.9876


(44)

We note that the primary difference between Mss and Msr lies in the fact that the optimal level-crossing
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predictor outperforms the standard exceedance measure when exposed to simulated data produced by a
model that it is designed to be optimal for. This can be ascertained by finding that there is a wider margin
between the AUC values in the leading 2 × 2 submatrix of Mss than that of Msr. Thus, the more closely
the model describes the real data generating source (i.e. higher model fidelity), the wider the margin of
optimality between the optimal level-crossing predictor and standard exceedance methods.

The results presented thus far meet with intuition, however, real performance should be dictated by the
evaluation of true anomalous events as opposed to the ones that are simulated to mimic the hypotheses
that have been selected to represent them. As such, we apply a formal validation and testing procedure
to generate results for the anomalies previously identified by experts. In testing both real data and real
anomalies using the method shown in Fig. 3, we will be able to discern not only how model fidelity affects
the ability of the optimal level-crossing predictor to outperform the standard exceedance method, but also
how well both compare to the SPRT methods when exposed to real faults. In this study, model fidelity can be
positively influenced through a variety of methods, namely, using a sufficient amount of data as identified in
Sec. IV or adjusting the kernel width to provide a Gaussian character to the residual. Increasing the amount
of training data to provide for an increase in model fidelity will prove to be computationally prohibitive.
Therefore, we will focus on the method previously proposed from Fig. 3, by using a tuning loop and adjusting
the kernel width for SVR.

(a) Mean AUC vs. σ for Speed Violation (b) Mean KS Statistic vs. σ for Speed Violation

(c) Mean AIC vs. σ for Speed Violation (d) Mean Information Gain vs. σ for Speed Violation

Figure 6. Feature and Kernel Width Tuning and Selection

For our experiment we will target an adverse event that is a speed violation in which the pilot must slow
down the aircraft to an indicated speed below 250 knots, upon descending below an altitude of 10, 000 ft,
according to FAA regulations. Thus, to establish ground truth for both validation via the tuning loop shown
in Fig. 3 and testing, we will use these criteria. 6 nominal flights previously identified not to experience
this event were used as training data to form the basis of generating both SVR and LDS model parameters.
In applying SVR, 29 non-redundant continuous parameters were identified to be used as predictors of a
selected target parameter. 4 different flights which contain examples of the speed violation event were used
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as validation data to compute relevant metrics to aid in target parameter selection and assessment of model
fidelity and class discriminability (cf. Fig. 3).

Out of all of the candidate target parameters under consideration identified in previous work,8 (indicated
airspeed, true airspeed, and control column position), the true airspeed parameter yielded the best perfor-
mance as measured by the worst case mean validation AUC (over all 4 flights). This can be seen in panel (a)
of Fig. 6, which illustrates the validation AUC as a function of kernel width (σ) for the three candidate target
parameters, all shown in red with differing line styles. The solid red line corresponds to the mean validation
AUC when using true airspeed as the target parameter. It is clear that out of the three candidate target
parameters shown, the worst case mean validation AUC was much higher for the true airspeed parameter
than when using any of the other target parameter candidates. One of the reasons for this observation may
be due to the fact that the 29 parameters were indeed good predictors of the true airspeed, which is of
interest for this specific event. Recall also from Sec. II that candidate target parameters not being used in
that role are included in the feature parameter set as a predictor of the candidate selected as the target
parameter. Thus, indicated speed and control column position are good predictors of the true airspeed,
which meets with intuition.

The model parameters previously trained were used for validation, as well as the same parameters that
were used to parameterize and detect critical events for all methods to be compared, shown in Table 1. Fig. 6
illustrates the results of kernel width tuning and selection, depicting how the KS statistic, mean information
gain, and AIC vary over various values of the kernel width for the all candidate target parameters. The
results corresponding to the selected target parameter: true airspeed, however, is now the focus of kernel
width selection. The best kernel width value is highlighted in Fig. 6 with a red circle in each panel, again by
minimizing the training KS statistic and training AIC (shown as blue solid lines in panels (b) and (c)), while
maximizing the mean information gain over all 4 flights (shown as a blue solid line in panel (d)). Recall also
that the optimization places the most weight on the KS statistic, whereas the AIC and KL divergence metrics
are used only to arbitrate final selection of the optimal kernel width. As is clearly shown in panel (b) of
Fig. 6, the minimum KS statistic for training data is highlighted with a red circle. The corresponding kernel
width value minimizer of σ = 154.5 does not minimize the training AIC, nor maximize the mean, however
we will nonetheless use this value since neither alternate metric provides sufficient arbitration. Furthermore,
the validation AUC value corresponding to this value of σ is a very acceptable 0.95.

Table 2. Speed Violation Prediction Experiment

AUC Pfa
† Pd

† Td
†,§ Pfa

‡ Pd
‡ Td

‡,§

Standard Exceedance 0.9857 N/A N/A N/A 0 0.57 71
Optimal Level-Crossing Prediction 0.9874 N/A N/A N/A 0 0.62 63

SPRT Positive Mean Test 0.796 0.62 0.978 5 0.69 1 0
SPRT Negative Mean Test 0.998 0 0 N/A 0 0 N/A

SPRT Nominal Variance Test 0.94 0 0.18 0 0.1 0.8 0
SPRT Inverse Variance Test 0.39 0 0 N/A 0.28 0.01 161

†Based upon theoretically selected threshold
‡Based upon empirically selected threshold
§Time elapsed between onset of speed violation and first correct detection in seconds

Thus, the associated model parameters will be applied for the test data, which consists of a single flight
that contains an example of the same event that was identified for the 4 validation flights. The testing
results are summarized in Table 2. Alarm system design for all methods shown in this table are based upon
4 averaged validation ROC curves corresponding to the 4 validation flights, and choice of an upper bound of
Pfa ≤ 0.01. Thus, it is clear that the optimal level-crossing predictor outperforms the standard exceedance
method for correct detections. Both methods yield a perfect zero Pfa false positive rate. Note that there are
both theoretically and empirically selected threshold-based results for all SPRT tests. The reason for this is
due to the fact that the false alarm and correct detection rate results are quite poor when using Eqn. 37 to
establish the theoretically optimal threshold, as shown in the second two columns of Table 2. Better results
are achieved by using the same ROC curve-based alarm design technique as was used for the competing
methods, resulting in an empirically selected threshold. Thus, the basis for comparison with other methods
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is well grounded, since alarm design is conducted in the same fashion.
Taking all of the empirically selected threshold-based SPRT tests into account simultaneously, the results

are mixed due to poor false alarm rates for the positive mean and inverse variance shift tests, and poor correct
detection rates for the negative mean and inverse variance shift tests. The most competitive out of the four
SPRT tests is therefore the nominal variance shift test, which yields a correct detection rate of 0.8, however
it achieves this at the expense of a false positive rate of 0.1. For the standard exceedance and optimal level-
crossing predictor methods, the resulting false positive rates are both 0, while the optimal level-crossing
predictor method yields a higher correct detection of 0.63 in comparison to 0.57 for the standard exceedance
method. Although both detection rates are lower than the one achieved by the SPRT nominal variance shift
test, the optimal level-crossing predictor yields the highest detection rate for methods having the lowest
possible false alarm rate.

Using empirically selected thresholds, it was also found that the first correct detection of the optimal level-
crossing predictor came 8 seconds prior to the first correct detection for the standard exceedance method,
and 98 seconds prior to the inverse variance shift SPRT test. However, the first correct detection for the
positive mean and nominal variance SPRT tests came 63 sec prior to the optimal level-crossing predictor,
at first onset of the violation. We have also determined that the optimal level-crossing predictor runs in
less than a second during the testing phase, which computationally far exceeds our objective of running in
near real-time, due to the 11 min period spanned by the test data. This does not include training time that
involved building the kernel function matrix.

VII. Conclusion

This paper has provided preliminary results for the optimal prediction of adverse events in aviation data,
demonstrating that an anomaly prediction problem can be recast as an optimal level-crossing prediction
problem. We have demonstrated that the optimal level-crossing predictor yields a better correct detection
rate and real-time advance predictive capability than using a method based upon standard exceedances.
Even though these results are less desirable than one of the SPRT tests normally associated with MSET,
overall it is competitive with the SPRT method. This stems from the fact that when the SPRT tests are all
considered in tandem to provide broader coverage than testing a single hypothesis, the results can be mixed
and thus uninformative without subsequent arbitration. However, the optimal level-crossing predictor has
no such drawback.

Another conclusion can be drawn from the apparent relative advance predictive capability reported in
Sec. VI and the results presented in Table 2. The test AUC results, although they quantify the probability of
correctly ranking two randomly selected nominal and anomalous data points respectively for each method,
are not necessarily good indicators of which method yields the lowest false alarm rate and highest correct
detection rate. This is primarily due to the fact that the thresholds were empirically chosen based upon
validation data. Furthermore, neither the AUC nor the false alarm or correct detection rates provide good
indications of which method will provide the earliest correct indication of the anomalous event. This is
due to the fact that the AUC, false alarm, and correct detection rates are aggregate indicators, and do
not represent a measure of real-time predictive capability. More research on the optimization of advance
predictive capability as related to the optimal level-crossing predictor will be conducted in the future.

In future work we will also extend the scope of the investigation to incorporate multivariate rather than
univariate state estimation which will aid in event localization and isolation efforts. We will also consider
multiple adverse events in parallel by selecting appropriate target parameters that are relevant to aviation
safety. Specifically, we will target those adverse events that provide for a fairer basis for comparison in
the future. The adverse event studied here yielded violations that were always initiated at k = 0. Thus,
advance prediction of the onset of the event in real-time was not feasible and reliance on the reporting of
false dismissals and alarms were necessary in order to demonstrate superior performance.

The effect of adjusting critical event parameterization and the art of model order selection both affect
final performance and will also be studied in future work. Namely, the free alarm design parameters L (the
critical threshold), d (the prediction horizon) have been fixed in this paper. These will both be investigated
in depth in future studies, in addition to the model order, n, which is selected heuristically here. Lastly, for
future comparisons, implementation of the baseline SPRT detection portion of the MSET will be patterned
more closely after methods used in practice.4 Specifically, repeated application of the SPRT test (also known
as the CUSUM algorithm), will be used as an enhancement to allow for continuous restarting of the tests,

20 of 21

American Institute of Aeronautics and Astronautics



setting the SPRT indices to 0 after each restart.
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